数学

为什么九条路不能相交是错误的

在世界各个地方,都极为广泛流传着这样一道数学名题,虽然说法各不相同,但实际上却是同一个问题:一个地方有三个村庄及三所学校,从一个村庄到三所学校各自修一条路,能否使这九条路不相互交叉呢?许多人认为,只要你不怕艰难多绕绕弯子,这件事是很容易办到的。但事实并非如此,上面这些想法是不可能实现的,其中有着奇妙的数学原理。 在1......

继续阅读

为什么会有七巧板

七巧板也叫“益智图”,依据近代数学史专家详细研究,七巧板发明的年代大约为明、清时期,它是我国劳动人民智能的结晶,在国外也十分重视。欧美人称它为“唐图”,其实这是一种误解,事实上“tangram”这个英文单词正确译法应是“蛋图”。从前我国东南沿海的水上居民被称做蛋家,因而在明清两朝,备受封建统治者的压迫以及歧视,七巧板就是他们的......

继续阅读

为什么在数学里要讲一一对应

我们讲求“一一对应”是数学上运用的最基本的关系。数字的来源相当早,有人类的出现,就有了数的使用。但是由于原始人类应用知识是极少的,且落后的,他们起初只知道“1”与“2”等数,后来,随着工具的大为改进,原始人捕获的猎物多得无法计清,他们为了计数,后来他们用结绳计数的方法来表示今天有多少猎物,这就是“一一对应”的雏形。 ......

继续阅读

为什么1+1可以等于1

我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......

继续阅读

为什么蜂窝都是六角形的

若你仔细地观察过蜜蜂的蜂房,你便会由衷地发出惊叹来,它的结构可真是大自然中的奇迹啊。 自正面看上去,蜂房的蜂窝全是由很多大小一样的六角形组成的,并且排列得十分整齐;自侧面看,蜂房由很多六棱柱紧密地排列在一起而构成的;若你再认真地观察这些六棱柱的底面,你会更加惊讶,它们已不再是六角形的,它不是平的,也不是圆的,却是尖的......

继续阅读

为什么有现在的电子算盘

人们在远古时候,就用石子来计数。后来,生产力发展,又改用像筷子一样的小棒进行计数,叫做“筹算”。经过长时间的使用,大家都觉得用算筹摆来摆去进行计算确实不方便,于是把算筹改为用“珠盘”进行计算,就是把珠子放入盘内表示要相加的数,然后取出盘子里的珠子表示要减去的数字。用珠盘计数,珠子特别容易滚动,后来我国人民发明了珠算。我们使用算......

继续阅读

为什么不渡河能知河面的宽度

不过河却要测量一条河的宽度,对一个懂得几何学的人来讲,与不爬到树梢上去却测量树的高度同样简单,我们能使用与测量不可以接近的高度的一样方法来测量不可以接近的距离。这二种测量方法都是用别的一个利于直接量出来的距离来代替我们所要测量出的距离。下面来介绍一种十分简单的用“三针仪”测量河面宽度的方法。 什么称“三针仪”呢?便是......

继续阅读

为什么铁拉闸一推就会收拢

居住在城市里的小朋友,在上学或者回家时,假如沿马路留心观察一下,你一定可以发现,有些商店或建筑物的铁拉闸,尽管很重,但是开关起来却十分轻便。 为什么一扇巨大的铁拉闸,只要一推,它就被合拢了,但是拉伸开来,却又是那样地牢固呢? 假如你仔细地观察这些铁拉闸的个别构造,那就可以找到正确的回答。因为它们是由一个个的......

继续阅读

为什么“和尚吃馒头问题”有别的解法

我国历史上著名的珠算大师、明朝数学家程大位曾写了一本影响十分大的书《算法统宗》。这本书后来一直被流传到日本、朝鲜、以及东南亚一带。在书中能看到他精心编写的大量歌谣体古算题,“和尚吃馒头问题”便是其中之一。这道题原文是:一百馒头一百僧,大僧三个便无争,小僧三人分一个,大小和尚各几个? 这是极其浅显易懂的七言诗,能像“唱......

继续阅读

为什么游泳圈也叫救生圈

只要游过泳的人便都有过使用游泳圈的记忆,若你套上五彩缤纷的游泳圈在水里游泳、嬉戏的时候,你是否想到过,游泳圈的浮力有多大呢,为何它能把一个人托在水面上呢?那么游泳圈的浮力是如何计算的呢?用数学知识我们应该知道,若把游泳圈充满气之后的体积,乘以水的密度,然后再减去游泳圈自身重量,得到的结果便是游泳圈所有的浮力。 水的密......

继续阅读