数学
为什么会有七巧板
七巧板也叫“益智图”,依据近代数学史专家详细研究,七巧板发明的年代大约为明、清时期,它是我国劳动人民智能的结晶,在国外也十分重视。欧美人称它为“唐图”,其实这是一种误解,事实上“tangram”这个英文单词正确译法应是“蛋图”。从前我国东南沿海的水上居民被称做蛋家,因而在明清两朝,备受封建统治者的压迫以及歧视,七巧板就是他们的......
为什么田忌赛马能得胜
齐王和大将军田忌商量赛马。他们约好:双方各自出上、中、下三个等级的马各1匹。一次举行三场比赛,输的每输一场便要付给对方1000两黄金。因为齐王的马要比田忌同一等级的马匹都要稍胜一筹,但在每场比赛中,双方都采用同等级的马加以对抗,后来齐王连胜3场,获得了3000两黄金。 没有多久,齐王再次邀请田忌来参加赛马。田忌感到十......
为什么有近似值
有的时候可能有人将问你:“你们年级有多少位同学呀?”你并不知道确切的数字,可你知道你班上有35位同学,共有4个班,因此你会说:“大概140名吧!”这时你所给出的数字便是近似值,由于你不知到底有多少位同学,所以就用近似值取代了准确值;并且你的分析也十分正确,年级中总共有143位同学,你所给出的近似值与准确值是十分接近的。近似值是......
为什么有无限大与无限小
人们通常碰到的数,不管是实数或是复数,都有确定的量值,就说是有限的。这充分反映了我们一般碰到的事物都是有限的,总能用这些数来计量。 我们在长期的不断认识过程中,又开始产生两个新的概念。最早,人们把整个宇宙说成只是地球,但航海学的测量却又测得地球半径大约为6370公里,它对人们来说,是一个十分大的数。16世纪,哥白尼的......
为什么偶数与整数同样多
当看到这则题目,你可能会不假思索地说:当然是整数比偶数多,部分怎么会比全体多呢!偶数是指能被2所整除的整数,它仅是整数集合中的一部分,另外除了偶数之外,整数还包括奇数。照这样看上去,偶数的确应该没有整数多。 但这个问题在实质上问的是偶数集合与整数集合之间的大小关系。集合在数学上所指的是一类事物的总称,若把所有的整数放......
为什么有时我们只求近似值
假如有人问你:“今年几岁了?”你会回答:“我15岁了。”这个回答是正确的,但15只是你年龄的近似值,它并不十分精确。如果你的朋友也是15岁,要比较你们两个年龄的大小,就必须知道你们生在哪一月,也就是,你必须说出自己的年龄是14岁零几个月才好比较。但它依然是个近似值。如果你们两人同时生在10月份,那么,必须更准确地知道你们的生日......
为什么π值是永不循环的
有一个关于圆周率的歌谣,盛行于古代:“山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐而乐。” 圆周率是圆的周长与直径之比,表示的是一个常数,符号是希腊字母 π。人们为了计算圆周率,公元前便开始对它进行计算。魏晋时期刘徽曾于公元263年用割圆术的方法求到3.14,这被称为“徽率”。 在公元460年,祖......
为什么九条路不能相交是错误的
在世界各个地方,都极为广泛流传着这样一道数学名题,虽然说法各不相同,但实际上却是同一个问题:一个地方有三个村庄及三所学校,从一个村庄到三所学校各自修一条路,能否使这九条路不相互交叉呢?许多人认为,只要你不怕艰难多绕绕弯子,这件事是很容易办到的。但事实并非如此,上面这些想法是不可能实现的,其中有着奇妙的数学原理。 在1......
为什么三角形内角之和总等于180度
平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......
为什么蜂窝都是六角形的
若你仔细地观察过蜜蜂的蜂房,你便会由衷地发出惊叹来,它的结构可真是大自然中的奇迹啊。 自正面看上去,蜂房的蜂窝全是由很多大小一样的六角形组成的,并且排列得十分整齐;自侧面看,蜂房由很多六棱柱紧密地排列在一起而构成的;若你再认真地观察这些六棱柱的底面,你会更加惊讶,它们已不再是六角形的,它不是平的,也不是圆的,却是尖的......