数学

为什么说动物中也有数学家

你晓得吗?在自然界中,有很多奇妙的动物“数学家”。在黄金矩形(宽长之比为0.618的矩形)里靠着三边做成一个正方形,剩下的那部分则又是一个黄金矩形,可以依次再做成正方形。将这些正方形中心都按顺序联结,可得到一条“黄金螺线”。而海洋学家发现,在鹦鹉螺的身上,在一些动物角质体上,或有甲壳的软件动物身上,都曾发现有“黄金螺线”。 ......

继续阅读

为什么偶数与整数同样多

当看到这则题目,你可能会不假思索地说:当然是整数比偶数多,部分怎么会比全体多呢!偶数是指能被2所整除的整数,它仅是整数集合中的一部分,另外除了偶数之外,整数还包括奇数。照这样看上去,偶数的确应该没有整数多。 但这个问题在实质上问的是偶数集合与整数集合之间的大小关系。集合在数学上所指的是一类事物的总称,若把所有的整数放......

继续阅读

为什么没有最小公约数和最大公倍数

在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......

继续阅读

为什么有数学黑洞“西西费斯串”

传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。 什么叫西西费斯串呢?它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到......

继续阅读

为什么画圆圈能帮助你快速解题

你对圆圈并不陌生吧,可你知道用圆圈可以帮助我们迅速解题吗?我们先看下面这道例子:棋类比赛之前,班长便统计会下象棋与围棋的人数。统计会下象棋的人数时便有14个人举手,统计会下围棋的人数时便有11个人举手。再后来班长发现,会下象棋与围棋的人数总共有19人。按照原来的统计应该有14+11=25人,怎么会少了6个人呢?这是由于有的同学......

继续阅读

为什么用一副三角板能画出24个角

每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......

继续阅读

为什么有哥德巴赫猜想

无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......

继续阅读

为什么能快速画出五角星

我们介绍三种用直尺与圆规很快画出五角星的近似方法。像这样,你以后在彩纸上再画五角星的时候,可以方便多了。 方法一:口诀“城外道儿弯,城门五面开”,首先在纸上用圆规画个圆,然后画出圆的两条相互垂直的直径AC与BD;之后分别用C、D作圆心,用直径BD的半径作弧,两弧交在E点。则OE便近似等于圆的内接正五边形之边长。自A点......

继续阅读

为什么铁拉闸一推就会收拢

居住在城市里的小朋友,在上学或者回家时,假如沿马路留心观察一下,你一定可以发现,有些商店或建筑物的铁拉闸,尽管很重,但是开关起来却十分轻便。 为什么一扇巨大的铁拉闸,只要一推,它就被合拢了,但是拉伸开来,却又是那样地牢固呢? 假如你仔细地观察这些铁拉闸的个别构造,那就可以找到正确的回答。因为它们是由一个个的......

继续阅读

为什么有鸡兔同笼问题

鸡兔一笼问题是在我国古代算书《孙子算经》里的一个著名的数学问题。它的内容为: 在同一只笼子里,关着鸡与兔子。数一下,总有头35只,脚94只。请问:笼里有多少只鸡?多少只兔子? 利用现在列方程来解应用题的方法,求解这个问题十分容易。设里面鸡有x只,兔子有y只,那么由题意,有: x+y=35 ......

继续阅读