数学
为什么不渡河能知河面的宽度
不过河却要测量一条河的宽度,对一个懂得几何学的人来讲,与不爬到树梢上去却测量树的高度同样简单,我们能使用与测量不可以接近的高度的一样方法来测量不可以接近的距离。这二种测量方法都是用别的一个利于直接量出来的距离来代替我们所要测量出的距离。下面来介绍一种十分简单的用“三针仪”测量河面宽度的方法。 什么称“三针仪”呢?便是......
为什么三角形内角之和总等于180度
平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......
为什么采用公历年
去年是公元2000年,而2000年的二月共有29天。若你再翻翻前年的日历,便会发现1999年的二月只有28天,再看看1998年的日历,1998年的二月份同样是28天。我们便把二月份中只有28天的公历年叫平年,而把二月份有29天的公历年叫做闰年。2000年便是闰年。 为何要分平年与闰年呢? 天文学上将地球绕太......
为什么汽油桶、热水瓶是圆柱形的
汽油桶、热水瓶等,都是用来装液体的容器。不知平时你注意过没有,装液体的容器,大都是圆柱形的。这是否有数学方面的道理呢?有的。 我们生产一件容器,都希望可以用最省的材料,来装一定体积的液体。或者说,用同样的材料,做成的容器的容积最大。 在平面几何里,我们学过计算圆面积以及一些正多边形的面积或周长的方法。例如:......
为什么有近似值
有的时候可能有人将问你:“你们年级有多少位同学呀?”你并不知道确切的数字,可你知道你班上有35位同学,共有4个班,因此你会说:“大概140名吧!”这时你所给出的数字便是近似值,由于你不知到底有多少位同学,所以就用近似值取代了准确值;并且你的分析也十分正确,年级中总共有143位同学,你所给出的近似值与准确值是十分接近的。近似值是......
为什么会有“+-×÷=”这些符号
+、-、×、÷以及=这五个符号,小学生,还有些学前幼儿也已懂得它们的意义以及用法,在高等数学里当然少不了它们。但是它们的来历确实经过了一段十分曲折的发展道路。 古希腊与印度人不约而同,都把两个数字写在一起,表示加法,如3+1/4就写成了3 1/4。直到现在,从带分数的写法中还可能看到这种方法的遗迹。 若要......
为什么一个人能解决狼、羊、白菜过河的问题
题目是这样的:有位带着一只狼、一只羊、一棵白菜来到河边(我们假使狼是不吃人)的人。河边刚好有一条空着的小船,过河时,船很小仅能允许主人带一样东西,若带两样东西上船,船便会沉下去。另一方面,若没人照管,狼会吃掉羊,羊又将啃白菜,因此,狼和羊,羊和白菜在主人不在的情况下,是不可以放在一块的。问主人应该采取什么样的过河方案,才可以把......
为什么有哥德巴赫猜想
无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......
为什么没有最小公约数和最大公倍数
在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......
为什么说数从劳动中来
你晓得我们目前数的数1、2、3…是自哪儿来的吗?数是在什么时候出现的?因为它产生的年代太长远了,根本没法考证了。可是有一点能够肯定,数的概念与计数的方法是在有文字记载以前便已经很快发展起来了。考古学家已证明,人类自从5万年前便采用了某些计数方法来计数了。原始时候的人类,天天必须出去打猎与采集野果子等食物来维持生存。有的时候他们......