数学
为什么“和尚吃馒头问题”有别的解法
我国历史上著名的珠算大师、明朝数学家程大位曾写了一本影响十分大的书《算法统宗》。这本书后来一直被流传到日本、朝鲜、以及东南亚一带。在书中能看到他精心编写的大量歌谣体古算题,“和尚吃馒头问题”便是其中之一。这道题原文是:一百馒头一百僧,大僧三个便无争,小僧三人分一个,大小和尚各几个? 这是极其浅显易懂的七言诗,能像“唱......
为什么在罗马数字中没有“0”
世界上每一个国家的文字都是不相同的,可是它们却有一种相同的文字,不需要经过翻译,每个人都会看得懂,这就是阿拉伯数字。0、1、2……9等,这样写起来既简单方便,又容易看懂,所以各个国家先后都采用它来计数。“0”是一个奇特的阿拉伯数字,它是在1、2、3、4、5、6、7、8、9、0这10个数字中诞生得最晚的一个。世界上各国早期使用过......
为什么用一根绳子能算出大树的直径
圆周率π是由中国古代伟大的数学家祖冲之最先计算出来的,要比西洋人早了达1000多年。有了圆周率,我们都知道它是圆的周长和直径的比值,就能借助π来求出周长或者半径的值了。可是在我国古代,π还未诞生的时候,人们是如何测量大树、池塘的直径的呢? 实际上,在更早的时候,勤奋智能的劳动人民便已经了解“径一周三”的道理来了。上句......
为什么在数学里要讲一一对应
我们讲求“一一对应”是数学上运用的最基本的关系。数字的来源相当早,有人类的出现,就有了数的使用。但是由于原始人类应用知识是极少的,且落后的,他们起初只知道“1”与“2”等数,后来,随着工具的大为改进,原始人捕获的猎物多得无法计清,他们为了计数,后来他们用结绳计数的方法来表示今天有多少猎物,这就是“一一对应”的雏形。 ......
为什么用一副三角板能画出24个角
每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......
为什么放大镜不能放大角
放大镜是在我们生活之中经常用的东西,特别是老爷爷、老奶奶在读书看报时更是离不了的必需物品。它可以把书本上的字放大了,让花了眼睛的老年人可以看得清、认得准。放大镜能把所有东西放大到几倍、十几倍、几十倍,若你觉得还不够大,还有放得更大的“放大镜”——显微镜呢,它可以放大至成百上千,甚至到百万倍,就连人眼看不见的细胞在显微镜下面都可......
为什么照相机用三角架而不用四角架
你肯定见过照相机所专用的三角架,它伸出来三条长长的腿,稳稳地托住了上面的照相机,使拍出来的照片将不会因为拍摄者手的轻微移动而变模糊。除了照相机的三角架外,拍电影所用的摄像机也都有一个三脚架,往往脚上还有副轮子,以方便摄像机的移动。 在我们生活中有四只脚的东西也很多,像桌子、椅子和各种鞋架子、超市里的货物架等等,不是都......
为什么有数学黑洞“西西费斯串”
传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。 什么叫西西费斯串呢?它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到......
为什么蜂窝都是六角形的
若你仔细地观察过蜜蜂的蜂房,你便会由衷地发出惊叹来,它的结构可真是大自然中的奇迹啊。 自正面看上去,蜂房的蜂窝全是由很多大小一样的六角形组成的,并且排列得十分整齐;自侧面看,蜂房由很多六棱柱紧密地排列在一起而构成的;若你再认真地观察这些六棱柱的底面,你会更加惊讶,它们已不再是六角形的,它不是平的,也不是圆的,却是尖的......
为什么说动物中也有数学家
你晓得吗?在自然界中,有很多奇妙的动物“数学家”。在黄金矩形(宽长之比为0.618的矩形)里靠着三边做成一个正方形,剩下的那部分则又是一个黄金矩形,可以依次再做成正方形。将这些正方形中心都按顺序联结,可得到一条“黄金螺线”。而海洋学家发现,在鹦鹉螺的身上,在一些动物角质体上,或有甲壳的软件动物身上,都曾发现有“黄金螺线”。 ......