数学

为什么有数学黑洞“西西费斯串”

传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。 什么叫西西费斯串呢?它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到......

继续阅读

为什么用一副三角板能画出24个角

每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......

继续阅读

为什么没有最小公约数和最大公倍数

在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......

继续阅读

为什么蜂窝都是六角形的

若你仔细地观察过蜜蜂的蜂房,你便会由衷地发出惊叹来,它的结构可真是大自然中的奇迹啊。 自正面看上去,蜂房的蜂窝全是由很多大小一样的六角形组成的,并且排列得十分整齐;自侧面看,蜂房由很多六棱柱紧密地排列在一起而构成的;若你再认真地观察这些六棱柱的底面,你会更加惊讶,它们已不再是六角形的,它不是平的,也不是圆的,却是尖的......

继续阅读

为什么放大镜不能放大角

放大镜是在我们生活之中经常用的东西,特别是老爷爷、老奶奶在读书看报时更是离不了的必需物品。它可以把书本上的字放大了,让花了眼睛的老年人可以看得清、认得准。放大镜能把所有东西放大到几倍、十几倍、几十倍,若你觉得还不够大,还有放得更大的“放大镜”——显微镜呢,它可以放大至成百上千,甚至到百万倍,就连人眼看不见的细胞在显微镜下面都可......

继续阅读

为什么在数学里要讲一一对应

我们讲求“一一对应”是数学上运用的最基本的关系。数字的来源相当早,有人类的出现,就有了数的使用。但是由于原始人类应用知识是极少的,且落后的,他们起初只知道“1”与“2”等数,后来,随着工具的大为改进,原始人捕获的猎物多得无法计清,他们为了计数,后来他们用结绳计数的方法来表示今天有多少猎物,这就是“一一对应”的雏形。 ......

继续阅读

为什么算筹是人类最早的计算工具

算筹是我国古代的劳动人民最先靠实践创造和广泛流传使用的简单计算工具之一。 算筹是如何产生的呢?《后汉书》上曾经有关于算筹的记载:“隶首则乱,陈子筹昏。”“乱”和“昏”的古语含义是用来形容禽兽不计其数,这足以表明远古时代人们随着畜牧业生产的不断发展,人们发现用手指头和结绳已不能满足计算猎物的需要了,于是人们就开始从那时......

继续阅读

为什么画圆圈能帮助你快速解题

你对圆圈并不陌生吧,可你知道用圆圈可以帮助我们迅速解题吗?我们先看下面这道例子:棋类比赛之前,班长便统计会下象棋与围棋的人数。统计会下象棋的人数时便有14个人举手,统计会下围棋的人数时便有11个人举手。再后来班长发现,会下象棋与围棋的人数总共有19人。按照原来的统计应该有14+11=25人,怎么会少了6个人呢?这是由于有的同学......

继续阅读

为什么用一根绳子能算出大树的直径

圆周率π是由中国古代伟大的数学家祖冲之最先计算出来的,要比西洋人早了达1000多年。有了圆周率,我们都知道它是圆的周长和直径的比值,就能借助π来求出周长或者半径的值了。可是在我国古代,π还未诞生的时候,人们是如何测量大树、池塘的直径的呢? 实际上,在更早的时候,勤奋智能的劳动人民便已经了解“径一周三”的道理来了。上句......

继续阅读

为什么要“先乘除,后加减”

为了防止四则混合运算时相互发生混淆,使计算得到一个已经确定的结果。人们先后结合生活和实际生产的各个需要,在四则混合运算中明确规定:要“先乘除,后加减”。为什么科学家会如此规定呢?因为这样规定是有一定道理的。它的理由如下: 1.这样规定运算顺序,更加符合生活实际需要。请看下面例子。例1:王大妈到布店买了3米红布,每米红......

继续阅读