数学

为什么放大镜不能放大角

放大镜是在我们生活之中经常用的东西,特别是老爷爷、老奶奶在读书看报时更是离不了的必需物品。它可以把书本上的字放大了,让花了眼睛的老年人可以看得清、认得准。放大镜能把所有东西放大到几倍、十几倍、几十倍,若你觉得还不够大,还有放得更大的“放大镜”——显微镜呢,它可以放大至成百上千,甚至到百万倍,就连人眼看不见的细胞在显微镜下面都可......

继续阅读

为什么算筹是人类最早的计算工具

算筹是我国古代的劳动人民最先靠实践创造和广泛流传使用的简单计算工具之一。 算筹是如何产生的呢?《后汉书》上曾经有关于算筹的记载:“隶首则乱,陈子筹昏。”“乱”和“昏”的古语含义是用来形容禽兽不计其数,这足以表明远古时代人们随着畜牧业生产的不断发展,人们发现用手指头和结绳已不能满足计算猎物的需要了,于是人们就开始从那时......

继续阅读

为什么有哥德巴赫猜想

无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......

继续阅读

为什么不渡河能知河面的宽度

不过河却要测量一条河的宽度,对一个懂得几何学的人来讲,与不爬到树梢上去却测量树的高度同样简单,我们能使用与测量不可以接近的高度的一样方法来测量不可以接近的距离。这二种测量方法都是用别的一个利于直接量出来的距离来代替我们所要测量出的距离。下面来介绍一种十分简单的用“三针仪”测量河面宽度的方法。 什么称“三针仪”呢?便是......

继续阅读

为什么球面不能展成平面图形

现在学过数学的人们都知道这样一个原理:圆柱、圆锥、圆台的侧面面积,我们可以利用各图形在平面内的展开图面来求出面积。但是球面是不能展成一个平面图形,因此球的表面积公式也就没办法用这个方法求出。但是为什么球面不能展成一个平面图形呢? 我们可以把圆柱、圆锥、圆台的一个侧面看成由一条直线(或线段)运动生成的图形,于是只有球面......

继续阅读

为什么有无限大与无限小

人们通常碰到的数,不管是实数或是复数,都有确定的量值,就说是有限的。这充分反映了我们一般碰到的事物都是有限的,总能用这些数来计量。 我们在长期的不断认识过程中,又开始产生两个新的概念。最早,人们把整个宇宙说成只是地球,但航海学的测量却又测得地球半径大约为6370公里,它对人们来说,是一个十分大的数。16世纪,哥白尼的......

继续阅读

为什么照相机用三角架而不用四角架

你肯定见过照相机所专用的三角架,它伸出来三条长长的腿,稳稳地托住了上面的照相机,使拍出来的照片将不会因为拍摄者手的轻微移动而变模糊。除了照相机的三角架外,拍电影所用的摄像机也都有一个三脚架,往往脚上还有副轮子,以方便摄像机的移动。 在我们生活中有四只脚的东西也很多,像桌子、椅子和各种鞋架子、超市里的货物架等等,不是都......

继续阅读

为什么一个人能解决狼、羊、白菜过河的问题

题目是这样的:有位带着一只狼、一只羊、一棵白菜来到河边(我们假使狼是不吃人)的人。河边刚好有一条空着的小船,过河时,船很小仅能允许主人带一样东西,若带两样东西上船,船便会沉下去。另一方面,若没人照管,狼会吃掉羊,羊又将啃白菜,因此,狼和羊,羊和白菜在主人不在的情况下,是不可以放在一块的。问主人应该采取什么样的过河方案,才可以把......

继续阅读

为什么田忌赛马能得胜

齐王和大将军田忌商量赛马。他们约好:双方各自出上、中、下三个等级的马各1匹。一次举行三场比赛,输的每输一场便要付给对方1000两黄金。因为齐王的马要比田忌同一等级的马匹都要稍胜一筹,但在每场比赛中,双方都采用同等级的马加以对抗,后来齐王连胜3场,获得了3000两黄金。 没有多久,齐王再次邀请田忌来参加赛马。田忌感到十......

继续阅读

为什么没有最小公约数和最大公倍数

在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......

继续阅读